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DETERMINATION OF%”THE STRESSES PRODUCED- BY.THE iANDING

IMPACT IN THE 3uLKHEADs OT A SEAPLANE BOTTOM~

ByV. M. Darevsky . -

INTRODUCTION .

●

The -present report deals with the determination of
the impact stresses in the bulkhead floors of a seaplane
bottom. The dynamic problem is solved on the assumption
of a certain elastic system, the floor being assumed as
a weightless elastic beam with concentrat ed.masses at the
ends (due to the mass of the float) and with a spring
which replaces the elastic action of the keel in the center.
The distributed load on the floor is that due to the hyriro-
dynamic force acting over a certain portion of the bottom.
The pressure distribution over the width of the float is
assumed to follow the Wagner law. The formulas given for
the maximum bending moment are derived on the assumption
that the keel is relatively elastic, in which case it can
be shown that at each instant of time the maximum bending
moment is-at the point of juncture of the floor with the
keel. The bending moment at this point is a function, of
the half width of the wetted. surface c and reaches its
maximum value when c is approximately equal to b/2
where b is the half width of the float. In general,
however, for computing the bending moment the values of
the bending moment at the keel for”certain values of c
are determined and a curve is drayn. The illustrative
sample computation gave for the stresses a result approx-

imately equal to that obtained by the conventional ,factory ‘
computation.

METFOiI OF COMPUTAT1”ON

,“

Of th’e possible” cases “Of’the l-anai-n-g-of a “s>apiane
the most critical case w,ill Fe that f-or whic~ the- hydro-
dynamic impact is most nearly .central (landing on the step).

.:.
*R’euort No . 44’9, of the: Centwal .kero”-”H~drodynamical Insti-
tute, Moscow, 1939-. ,.. ..””. .

...



—

2

.. . . ..!, .

. .

I?ACA Technical ,Memorandum No‘: 1055

. .,,. ; , .-. - -. . .,..!

This case, therefore, will be the basis of this discussion.
In the cases of landing on the bow or stern the length of
the impact surf”ab-e’i-ssufficient for:’tlieimpact phen~menon
to be schematized as that of an infinitely long wedge on
water . (T~& preblem-has been solve~ by-W~gner ,(reference
1)8) In the case of landing on the step, if the landing
is effected on a calm surface, the length of the impact
surface is small, and account must he taken of the fact
that the float enters the water at a certain angle. In
the most severe case, hawever - namely, landing on, a
large wave - the length of the impact surface exceeds the
width by at least 1.5 times. Hence , for this case the
preceding schematlzattonis permissihlo. - “.

!... -.

In landing orI the step when the ratio of the length
of the impact’ surface to the width is near 1.5, a correc-
tion for f.initen’e$s of the surface is nevertheless desir-
able. This ~orrectibn may be made with the aid of the
experime-ntal formulas obtained by Pabst (reference 2) and
Povitsky (reference 3).

The number of main bulkheads as%oclated with. the
impact sur-face ‘is not large. These bulkheads generally
differ little from each other. l?or simplicity and with
small error’ they will be assumed as’ working under the
same conditions. In accordance with the preceding assump-
tion consider that the bottom of each of the bulkheads
associated with the impact surface is loaded by a ,force
P/n where P is the total impact’ force and n the number
of bulkheads considered. In the case where certain of the
bulkheads differ appreciably in stiffness it is sometimes
possible to assume that the loading on the bulkhead bottoms
is proportional to their stiffnesses. Since the bottom
always has considerably less stiffness than the remaining
structure (hull) of the float, consider the latter as abso-
lutely rigid and only the bottom as elastic*. In this case
in the landing on water the inertia fcrces will be trans-
mitted mainly at the ends of the bulkhead floors. This
permits a consideration of the mass of the entire float as—- —..—.
“~ misunderstanding may arise . On the one hand use is
made of the lJagner solution which is applicable to a wedge
of absolute stiffness and~ on the other hand, the elasticity
of the bottom. ‘The fact is that the hy’drod,y’narn,icpressure
is determined b.y the, Wagner method. ~or .% ~-bott,om float,
however, the than-ge in-pressure for -s.mall..chang.esin.the
bottom ‘shape due to elasticity 5s insignificant. This-
change should be taken into account .otilyfor “pract,i.tally
flat bottoms.



—..___ .——— ..__ —

NACA-T~chnical lJemo&apdum:No. 1055 3

‘concent’ra-t-e”d--a’t-t’heends of t’he f10 or s*. If the mass of
the entire float is denoted by m, the mass associated
with each end of the floor is m/2n.

In the case of @ccentric i~pact, in.sfead of m,

i2
‘r =m should be used where i is the radius of
.. . .~z+rz .. ,. ........
inertia of thet.seaplaye and r the. 1.ever arm,relative to
the center of gravity of the seaplane.

The centers of the floor “beams”will be acted o’n%y
the. elastic force of the bottom with..~he force transmitted
mainIy throug”h t-he.keel”. .This. force arises from the defor-
mation of the bott’om.on impact . The elastic force of the
bottom is c-onsiidered a.s the elastic force of a fixed keel .
beam supported on intermediate elastic supports (the flo0r6
lying beyond the impact surface).

~In order to take into account, to some extent, the
action of the skin, the keel beam and the bulkhead floors,
with the dstach.ed strips of skin to be of a width of 40
times the thickness,are considered together.

.
Since the 100al action of the im@act extends over a

finite Ie-ngth of bottom, it will be sufficient to consider
the keel beam to he fixed on three main bulkheads to the
left and the right of the impact surface.., Thus the part
of .th.e.’keelof interest may be represented by a built-in
beam on four intermediate elastic supports (fig. 1). The
rigidity of. these ,supports. ,K - is determined by the. formula

,.ti-r. ,,:.,

K =!* wtie.reI 2b ‘ is the le”ngth of ‘the floor, ‘ EI;
:b3 ‘~-:’ -. : .: .Q

sti.ff:ness (the, floors are considered as ,st.raiglrtbeams
constant stiffness).

,-Ih .,. . ..
Th,e rn’et:hod,of computing beame -on elastic Suppo:nts

t-he

of

#is
descri,h,+i-:i~deta.i,lin-the work of Umansky (reference 4.).
By use..of tihis qe%hod-the maximum defle@.ion du-e.to the -.
concentrated ;force at the center of the :beam P.,is. ,-
detsrmine-t : ~ . ..

-. .. .‘.; ’-,--... ... ......—.--:--.................:.--..-..--.,,--------...—-----.-..-.- . ..--,...... ...
+. .- f.E

,~.. . ! - ““. . .’:,-.,.: .!
,,-. J,.- .-

‘@he bul~he:a d-”fl’”oors,,,ass’ociated with the impact’ ~surfac.e-,.
only ai+ ‘“cons~~e’f~d. ‘- : ‘..--. ‘ . . -.-,”
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w-hkre~ :’ .. .
.-. ..;

K = K(EIK, K, At) . “

III “s-tif-fnessof the keel beam.-K.

K .sti.ffness of the supports (the ratio of the r’eaction\
of the supports to their deflection)

Al spacing between supports

The elastic action exerted on the bulkhead floors of
the wett,ed. surf’ace by the rest of the bo,ttom structure” is
thus replaced by the action of an equivalent spring of

“ stiffness K. Each of the floors is acted on by a spring
of stiffness K/n .

As s.result the f’ollo~rin::scheme is arrived at. The
elastic bei~t beam (floor) with the concentrated masses
m/~11 ~fi the ends (~~e tO the mass Of the float) has at the
instamt t=o a, vf~locity V9 (iilitial velocity of immer-

sion of flo:it*). Thereafter the beati]is acted u~on by the
tliatribu.ted load P/n (hydrodynamic pressure) and the con-
centrated force,s..(elastic action of the bottom). At the
center of the bearl the fQrce ~=~~ ~~here S

n is the

vertic:.1 displace]:lent of “the keel with respect to the chine,
‘and .at tile ends of the beam the forces are 3’/2 (fig. 2)**.

On account of thei symmetry one-half the beam:~ay be
considered, the corres~onding boundary conditi-ons being
applied to the second half and the spring force taken to
‘be T/2 - that-is, the stiffness decreased by one-half.

,

The floors may be of the most varied shapes. Two
sharply diff6ring shapes are shown in figures 3 anti 4.
.The elastic axis o,f.the floor is, in general, curved>-
However, it shall:be considered straight, since the
error made in this.,dssumption -,shodld’be”ihsignificant: ‘
The elastic axis may be drawn as indicated in figures - ;
3 and4. Furthermore, the stiffness of the floor shall

‘For landing on the step Vd should be taken as the
component of the landing velocity normal to the keel at
the step. In the remaining cases V. may be taken as
th~ V&rti’C&l ~Om-pOfierit-Qf”t-he.’laridlngVe~QC%t-Y;:, . -

... ... ......

*%e dot’ted line represents the stiff frame repl”a~cing,,the
float hull.

.. . .
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be considered as constant (mean stiffness) although a

variable stiffness offers no fundamental difficulties

for the discussion. It may bs noted that for modern

floats there IS a tendency to make the floor beam of

almost constant height. In view of thelfact that the

elastlc axis is inclined at a certain angle to the

surface of the water and the pressure of.the latter is

not normal to the axis, the floor beam during the

landing of the seaplane experiences both a transverse

and a longitudinal impact. By decomposing the forces

acting ofi the ?1OOT beam, including the inertia forces,

into tuo components (along and perpendicular to the

elastlc axis) the transverse and longltudznal impacts

may be separately $onsidered, the stress in the floor

beam belzg determined as the sum of the. bending and

compressive stresses. It is easy to show, however, by

sl”mple computation that the compressive stresses will be

negligibly small by comparison-with the bend-ing stresses

and ‘hence the longitudinal Impact need not be considereti.

In exactly the same way, It 1s of no value to take into

account the Inclination ,of the elastic axis to theowater

surface, since this angle a WI1l generally be 10 to

200, COS a = 0.98430 – 0.93869, and hence the corre-

sponding components of the forces will differ little from

the values of’ the latter themselves.

!?:nus the final scheme (figs. 5 and 6) vill be some-

what si}]pler than that shown in’ figure 2. Figure 5 ShOwS

the schene at the inltlal instant t = O, figure 6 at the

instant t when the float is immersed someuhat in the

water . As in figure 2, the dotted llne represents the

stiff frame replaclng the uppe: rigid part of the float.

Since the mass of the beam (floor) shown In figure 5 is

small b;, comparison vzth the mass concem.trated at Its

right cud, the beam is considered as weightless.

‘i’he load distribution on the beam is determined with

the aid of the formula of l!Jagner (reference 5) for the

hydrodynamic pressure on a submerged wedge:
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where

P d.ensl~y af w2ter

w = pn:;l

c h?.lf vidth of wetted surf?ce of bottom

1 l~ngth of wetted surface

and u 1s de~ermlned by the formula

(2)

n= l-1(~) eax.atlo?. of ‘oot con ~roflle described rel~?lvz

‘to the nxes of coor>lnates shovn In fl~ur~ 7

thi?il u(c) IS very simply deter mlued as

T;he l~near loadin~ on the ‘o?a-, cfierzforc vlli b.

q(x, c) =

{

-p(x, c) Al at [O, c]

. c ,.L [C, b]

where

b lengt. i: of beam (half w~dth of floz?t)——— — .—..—— ——— ——— ——— ———. -— ——— ——— ——— ——— ——— --————————————-——

*Generally, f~r surfaces wlt50ut dlscontlr.ultle”., , tr. e

pro f~lc ~s sufficiently well represented b:,- arl algsbr?!c

curve 0? ch. e farm

n = Pot – 5f, _1En

**Thc ~ener.ll fcrmula fOr kn mz:r ‘Ee I-ound In the A-r:>l. :?P

Constructors Refer @rice Bock, vol. 1;, 1938.
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‘?
The equation Of Motion Of the Points of the elastic

axis of the beam with linear loading Q(x,c) is the
following. ,, 13’y,-.w,r?,*.El#,+aW=q(x,c),

where a is the density of the beam. In this case the
beam is weightless and therefore a = 0. On the other

hand, the acceleration $ is a finite quantity owing

to the finite mass at the end of the beam. Thus

and the equation of motion assumes the form

with the boundary conditions

1. y’x(o,c)=o, 2. EIyx’’’(o,ck~(b,c) cY@, c)l=oJoJ
*

3.yx’’(b, c)=O, 4.EIyx’’’(b, ck[y(b,c) cy(O,c) J);yty(b, c), =O.=O ,

where k = ~ the stiffness of the spring
2n

If use Is made of the relation: d’y dzy dc_ .— .
dt2

()
dcz ~

‘+$.$ ,

the fourth condition may be rewritten in the following
form:

4.EIy=’’’(b,ck~(b,c)cy(o (o.C)]—;ny’’c(b,c)c’a—2~ny’c(b,c)c’’=o.

The initial conditions are: l.y(b, O)=O, 2. y: (b,0)c’C=O=v0,

L)enote any function of x through # p(X,C) by

Pl(x,c), any function pl(x,c) by pa(x,c), and so forth.

From equation (3) there IS obtained

(
a _ ~1(% c)+cl(c)~t [Ojc],
dxg — PI(c,c)+cl (c)at [c,L],

dzy

{

PT(x, C)+ C1(C)X+C2 (C) at [O,c],
w= P2(c, c)+ C1(c)C+ C2(c)+[P1(c, c)+ C1(c)l(~–c)at [cj’blg

f
P3(X, C)+* C1(C)X2+ C2(c)X+C3 (c) at [O,c],

dy
-Z=,

P9(C;C)+; C,(C)C’+C2(C) C+ C3(C)+[P2 (C)C)+cl(c)c+

‘X–c)z at[O,b],+Cz (C)] (~–c)+[pl(c, C)+cl (c)l ~
.

—.——— — ——— -——----—--— —--—..—----—--—.
*No account is taken of the weight of the concentrated mass
since for a sufficient immersion of the float the mass is
compensated by the hydrostatic pressure and is moreover a
small magnitude by comparison with the inertia forces.



8 J9ACA Technical Memorandum No. 1055
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~4(-L c+ -&Cl(4X’++ C, (d ~2+c3 (c)~+c, (c) at [0, 4,

P. (c, c)+ -: c, (c) c’++ c, (c)c’+ c, (c) c+ C4 (c) + [P3 (c, c)+y=
I ++C1 (c)c’+ c,(c)c+ c,(c)](x– c)+ [P, (c, c)+ c, (c) c +

+c,(c)](~;c)’ + [PI (c, c)+ CI (c)l‘xj c)’ at [c,b].

With the aid of these relations and after the usual
transformations the boundary conditions can be written as
follows:

. C*(c)= — P3 (o, c).

1( )
2, EI-–~ Cl(c)—h;C, (c)= —EiP1 (O,c) + :(~ – c)’ p, (c, c)+

++- (b– c)’ p, (c, C)— kbP3 (O, C)+ k (b – c) P8 (c, c) – kpA (O, c)+ kp, (c, c).

, 3. bC1 (C)+ C2 (C)= — (b – C) f, (C, C)— P2 (C, c).

4. gn c“ C4° (c)+ ~ C“C,’ (c)– El [Pl (c, c)+ c1 (c)] +

[ (
+k P,(C, C)–P4(0, C)+~CI(C)C3++C2 (C) C2+C3 (C)C+ ‘3 (c> c)+

++G (d C2+C2(4 C+c.de))(H+(P2 (L 4+G (c)c+

+ c, (c)) ( yb q+&cq$P4,c, c)-(b >C)2 + Pi (c, c)+ c,(c)—:—

‘2~~8(c) C)+ P2(@++CI” (c) c’+ + c,”(c)c’+ c’”(c)c+

[
+(b–c) ~#’s (c,c)–2: p, (c,C)+pl (c,C)+;- C1’’C2+C2”C+

1+c,,,+(b; d’[~P2(c, c)–2: 1p,(c,c)+c,”(c)c+c,”(c) +

\ (b;c)’
[

~P, (c, c)+ c,” (c) ])+~q $ P4 (c, c) – P9 (c? c)+

[
++ Cl’ (C) C’+ +c2’(C) C’+ C,’ (C) c+(b–c) -$ ,“, (C, C)– P’(c, c)+

1 [++ C,’(C)C’+C”(C)C+G’(C)+(b; c)’ $P, (c, C)–p, (c, c)+

I 1 [
+ c,’(c) c+ c;’ (c)+ (b;c)g -g-P, (c, c)+ c,’(c)1)=0. *
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From the first condltlon C3(C) is determined and

from the second and third Cl(c) and Ca(c). Having

determined c~(c), C=(c), and C3(C), the coefficient

C4(C) is determined from the fourth boundary condition

and since this condition is a differential equation of tho
second order with respect to C4(C) the latter is obtained
with two arbitrary constahts the value of which is found
from two Initial conditions. But c.(c) need not be
determined because the normal stress U iB expressed
through the bending moment in the expression for which
C4(C) does=not enter. Thus by making use of the oxpres-

sion for ~ the following-formula is obtained for the

bending moment M:

M=
{

/5/ [P, (x, c)+ c1 (c)x+ G (c)l at [0, d],
EI [P, (c, c)+ Cl (C)c+ C, (C)+ (Pl (c, C)+ Cl (C)) (x–c)] at [C, b].

(4)

Yrom the second qnd third boundary conditions an
expression Is obtained for the values of Cl(c) and

c=(c):

c,(c) =
[
—EWI(O, C)++- k(b–c)(c’–2bc— 2b’)~,(c,c)+

++kc(c—2b)P2 (C,C)—MP3(0,C)+

1+k(b–c)P8(c, c)–W, (0, c)+kP, (c, c) jb, . (5)
EI+ ~

c,(c)=
[ ( )JWP1(O, c) —(b —c) E~—~+~ pI(c, c)–

(
. E~+~_ kbct + ‘$

)
P, (C, C) + kb’ P, (O, C)—

— kb (b — C)P, (C,C) + kbP4 (O,C)— kbP, (c, c)l ~, ;kb, .
(6)

-<v”
Integrating successively with respect to x the

function - # p(x,c) results In the following expres-

stone for PJX,C), Pa(x,c), P3(x,c), and P4(X,C):

_ vo2A 1

([f-c l+u~+cu+-— 1P,(x,c)+E~(l+p)~ u lJP(l+UZ) arcsin xc~2+u~

P

(
l+@_ X2~+~—”~il+u’in cVl+U2 +-x},

— .
_—

l+fbx CV1+U2—X

—Vo’Af P c l+UZ+CU ‘u
P,(x,c)=~(~ i

{( )(

x
x

x arcsin —+c~l+u~
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+!(-’- -++-[’c’:w)+x’(=-”2-++
1[+c(l+u’)x arcsin~V.~W –-~ —x’—2c2(l+u2)+

( )

.— c~l+u’+x

11+‘2 (1+U’)In 1– ‘,~’+uz)+CV 1+U2 ln‘~f+~~ _~ ‘

V02A1 P ‘ I+uz+cu&

{(

P8(X, C)= ;(1+P)2 u 4-—_
dc ) [(

2x’ +

)
+ca (1+ u’) arcsin L+ 3X’

i 1
l+ U’—: —

c~l+u’

:-2(,;,, [’(1+ .’)p+%+~)arcsin;:Tj+

(
+; ;“ o+~’)+” )/ 1[

l+U’–$ —+ —$3” (1+ U2)X+
.

(
+$ V’1+”2 (cV’l+U2+x)zln 1+—L— –

c~l +U2 )

(
–~til+u’ (cVl+u’–x)z h 1– .x ;

c/l+u2 )11
—Vo2A/ p 1

P, (x, c)= —
((

du
H(1 + p)’ z 3

c l+ U*+CU=
)[(.

,c2(l:~2) \ %)x

( v )
X xarcsin ‘_+c ‘— —~ —

c~l+u’
l+U’

( )/

—_

l+rd ;:
J 6 (l:p) x

5 ‘2(1+ U2)— X2 c—— ——_
18

[ ( )X c (l+u’)x x2+<-cY (l+u2) arcsin ,.L_+
CV1+U2

+( ~scz (1+U2)X2++X* c+“ (l+ut)t+~
W 1l+U’—$ —

2:[

— .
—— _x4_

( )

11c’(l+uz)x’+ c~l+u’(c ~l+-;’+x)sl” 1+ x +
c~l+u’

(
+c~l+u2 (c~l+u’–x)nln 1– L

cfl+u’ )11
Substituting these expressions In formulas (6), (5),

and (4) gives the bending moment distribution along the
beam. However. the value of the moment at the critical
section is of interest. For a float bottom with weak
keel (such as is usually the case in present day deeigns)
the critical section will be at the point x = O.
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Thus .

V2Alpc2
A40(c)=~~ + ~)2

[ (.
VW? 1~~’ “ 2 l+ld

)
-+~.l+p +CU* +

,..

‘+
‘(l; U’)+A(C)l,,.. . ~ (7)

is found, where

EI U(l+p)’ c.(c)=
A(c)= ~~lpc* *

=6
[((’ H

— l+d+cu~ 1 [fi~++ (1+@ +*(1 +U’) El+

11++(1 +u’) arcsin _
kbcs (1+ u*) I/w

/l\u* + 9 [ 1+ ~’+c% –

U (b—c)(l—~) ~l_~+~ —
–&$Jl+u’)]-– 2(l+p) [ 1

[Cu El+y — kb~c+ ~
H 1

3 2u*+cufg —9+:y2+3t+P)—

.-

.[:

28+23ui ~ l;::~+~Cu$ –
—;c%kb(b-c) — ~

1

[

225 + 240 U*+ 24 U4
+—&c%kb (15+4u2) CU~ + 10 ~

+
105+ 115US+16U4

lo(~+ F) I
+ ‘n’=((~-c) [E’-% +kb(:-c)’+

[

‘c (1+.”’) EI
+4

&ba k~@-@2,+~(&c)c+–~+- .2

(8)

1 ( -G)] E!C:9+ ~kbc’(4+u’) h 1

The value of u is, hotiev.er, s~f?ic~ently small
(for a w’edge with straight sides u = ~ tan P), so that

in most of the terms of equations (7) and (8) Ua and

C* may be neglected.
da

~------- .. .. . . ----
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Finally, there is obtained

(9)
[

vo%pc2 3 +
Me(c) = - IJ

U(l + 1.L)2 3(1 + P)
~ + A(c)

‘2 1
rA(c) = - ~20(; + ~)[360nEI + 10kca(9m?) - 8c) ~
i

f6EI[23(I -ukc2(45mb - 480)] -
24(1U+’W) ~

v) +5C(1 +W)]+

kbc[lOba(l ● w) + 2bc(l + 21.11)+ CZ(3 - 2w)J~ +~ (2EI +
J8

kbc2) In
A-1

+% [6E1 + kb(bz ~

. ( )j 1C2)J tn 1 - 1 ——
l+u~ XIC + ~

(lo)

The following should be remarked. In the square
brackets of formula (10), tkle second, third, and fourth
terms~ notwithstanding the presence of the factor u,
may attain approximately a value of 20 percent of that
of the first term. It may be shown, however, that for
the usual bottom shapes and in the case of a weak keel,
where the stiffness of the latter may be of the same
order as the stiffness of the strongest floor beam, the
algebraic sum of the preceding terms is small by comparis-
on with the first

t
erm and constitutes not more than

5 percent for c < ~ and not more than about 10 percent

for c>+. On this basis equation (10) may be replaced

by the eg<ation

A(c) = - b
, . [360TTEI + 10kc’(9nh - 8c) -t-

48c) ]
EIc ;-

(10’)

which will be sufficiently accurate for C-S2 and will
2

give an error of the erder of 10 percent for C>JL.
2



1~---”
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By far.mu.las..(9.-)and (“1.0),:or“(9,)and (10~) the stresses
in the floor as a function of ,C aie determined. TO ob-
tafn the ,maximum stress, a curve !.(?). is drawn, a few

values of the bending moment %eing.determined by (9), ,and
the maximum value of Me(c) obtained. This value should

be obtained, in general, for a certain intermediate value
of c. Thus, since the impact forde increases with increase
in c, the bending moment MO(C) will lf.kew5.seat first
increase. On the other hand, since with increasing c
the force of the hydrodynamic impact is concentrated
usually at the edge of the wetted surface, it should be
expected that after a certain instant of time the value
of Me(c) should begin to decrease, particularly since

with increasing c the reaction of the keel increases
(fig. 6).

For V angles exceeding 15 0 the right side of equation
(1), and therefore also of equation (9), should be multi-
plied by the correction factor v:

where $3 is the angle, in radians, of inclination of
the bottom at the edge of the impact surface.

Moreover equation (1) was obtained for the conditions
of the two--dimensional problem; that is, the wedge was
assumed as infinitely long. Practically, equation (1)
may be used when the length of the wedge is ~ufficiently
large by comparison with the width, at least one and oae-
half times as large. AS has already been remarked at the
beginning of this paper, for landings on the bow and on
the stern the length of the impact surface ,is sufficiently
great and may be obtained by considering the landing on a
calm surface.

For landing on the step the most unfavorable condi-
tion should be considered - namely, when the float lands
on a wave. AS experiments have shown; the length of the
impact surface then exceeds the width by 1.5 and more
times. Since, for a ratio of length of wedge to width
near 1.5 the error in computing the impact force on the
assumption of two-dimensional flow is appreciable, a .
correction for finiteness is desirable.

This correction may be made with the aid of the
experimental formulas obtained by Pabst for the associated

L- .-. _. — .— .. —
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‘.mass ‘o<fflat plates and’ by Po-vi.t,sky fur ‘the associated
mass of wedges. For ~ ~1 .5, and usual V angles, the

formula ‘of .Pabst diff~rs little from that of’Pbvit sky. -
B,oth ‘of them will be given. ., -

. .

Let b be the half width of.the plate and t its
l&igth. The associated mass M “for the plate for the
assumption of two-dimensional flow is

,,

M = ~ IC22P “ (11)

the-associated mass for the finite plate
(~~i)is:

M = np(2c~ - C3) (12)
~

For an element of an infinitely long wedge the
associated mass is

where

1 length of element of wedge
..

c half width of wetted surf~ce of wedge

(I’ denotes the Gain-lafunction )

The value’ of 8 also ,may be obtained from ‘th”ecurve of
figure 8.

(For the wedge of finite length’ 1 & J-1.425, where
.!

‘d is the length of the wetted yart of -the side of”the
wedge

)
..

M=
coAp’c2 (’ - :) ~

(14)
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The impact force for “the wedge iS expressed by the
formu-la - “---- -:

.* 2

p =(1~“+)’u
If the impact force. for the case
problem is denoted by Pinf and

the finite wedge by Pt, then

. .

of the two-dimensional
the true impact force for

dM~c
%“= ( )m.+ Minf 3 dc

,...
P.

= q(c)
lnf m+Mt

*

Without taking into account the pressure distribu-
tion along the width of the wedge (the pressure distrib~-
tion is not identical for the infinite and finite wedges)
a correction is made for finiteness by multiplying the
pressure determined by formula (1) by q(c). In formula
~~.ci~yisq~~~n likewise necessary to multiply the right

. BY use of formulas (11) and (12), there
is obtain~d

q(c) =
1 (1- ~~

(1- )1’3 21 )

2m +L
l-rpc3 c

From (13) and (14) is obtained

(15)

(16)

Thus, for com-puting.the bending moment M and the
correction coefficient q(c) for landing on the step, it
remains merely to determine the length of the inpact sur-
face 1. It s’hould be n-oted that, during the immersion
of the float in the water, the length 1 is, in general,
varia%le . It is nevcrtheles’s possibleto assume a certain
constant value for 1 since, ‘in the most unfavorable case -
namely, landing on a wave - tho float almost instantaneously
comes in contact with the wave over a considerable length
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of surface which afterward increases only slightly. For
the same reason it is of no significance to make any
correction for finiteness at the first instants of im-
mersion. The correction should be made when a sufficient
width of the surface has already been immersed.

The character of the sea surface permissible for the
landing of seaplanes varies with the. tonnage. The follow-
ing mean values for the limiting height of the wave h
in relation to aircraft of various tonnage ranges may be
given (reference 6):

First group G = 700 - 1500 kilograms, h = 0.15 - 0.3 meter
Second group G = 3500 - 5000 kilograms, h = 0.8 - 1.0 meter
Third group G = 8000 - 15000 kilograms,. h = 1.5 - 1.8 meters
Fourth group G = 20,000 ~,nd above, h = 2.0 meters

With improvement in the seaway the preceding values
may be raised somewhat. The lsngth of the wave 1 is
determined as a function of h
(reference 7).

by the curve of Zimmernan
The wave is sufficiently well rep~esented

by a trochoid. The equation of the trochoid in parametric
form is expressed by

where h is the length of the wave and h its height.
The trochoid also may be obtained by a simple geometric
construction (reference 5). The latter is indicated by
the thin lines of figure 9. For the trim angle the mean
angle of inclination of the tangent to tho wave increased
by 3° to 4° may be taken. For aircraft of not too great
tonnage (2500 to 50@C kg) the condition of the sea may be
taken as a “calm surface” (t~.e wave intensity is 2 points)
which corresponds to an average force of the wing equal
approximately to 3 meters per second (2.8 m/see at a height
of 2 m from ground level and 3.6 m/see at a height of 12 m
from ground level). Under these conditions the height of
the wave is 1 meter and its length 11 meters. The angle
of inclina~ion of the tangent to such a wave varies f~om
zero to 15 so that the trim angle may bo taken as 10 .

TO determine the length of the wetted surface, draw
the contour of the float with the chosen trim angle on
the profile of the wave, immersing the step to the cklinc
(fig. 10). It is necessary, of course, to see that the
tail of the float does not dig into the wave (this refers
especially to floats with long tails). The maximum
length of the wettsd surface is taken as the value of 1.
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As tests have shown, in landing on the step the pres-
sures at the laft end of the wetted surface are found to
be negligible. This may be explained by the fact that
because of the longitudinal. curvature of the bottom the
points sufficiently far removed from the step come in con-
tact with the w~ter at later instants of time. Moreover,
the distance of these points from the center of gravity
of the aircraft apparently has some effect . For this
reason, for the purpose of groatar accuracy, it is neces-
sary to te.ke for 1 not the entire length of the impact
surface but a sinallcr value - namely, the length of the
part at which the bottom is almost cylindrical.

If the width of the float is not too great, it may
be assumed that the maximum impact force will occur at
immersion of the chine. Since, however , the ratio of the
width of the wett,od surf~.ce to the length after the
instant when the float is already sufficiently immersed
in the wat~r varies Iittlc, the VFIUG Of v(c) may bc
assumed coi~stant Irith the widtk~ of the float taken as
th~ width of the inpact surface.

ILT.UST5ATIVE EXAMPLE

The con-putation is conducted for a symmetrical
landing on the step. The f-ondar,ental data reouircd- for
the corr.~u.tationzre. the following: —

G weight in flight (2500 k?)

v~ landing velocity (30.6 KI/SCC)

b half width of float at step (75 cm)

A sketch of part of keel with bulkheads lying beyond
the impact surface is sh~wn in figure 11 (the length of
the wetted surface must bc initially determined).

Ik mean moment of inertia of part of keel beam under
consideration (560 cm4)

10 mean moment of inertia of floors lying directly
beyond imp:ct surface (90 cm4)

I mean moment of inertia of floors associated with
impact surface (313 CiJ4)

w mean resistance moment of floors associated with
imp”.ct surface (20.85 cr.ls)

E elasticity modulus (7.2 X 105 kg/cm2)

I —.—
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Computat ion

Com~utation of k.- For the deflection-—-——--

15,88.102 ~

and angular

displacement at section X of a beam on elastic supports
under the action of a force P applied at the center df
beam, the’ following formulas are obtained: (Reference 4
makes use of the same notation, )

Y;= Yo~.+ f’o~x— MOCx — Qo~. + N.,

Y. = yoAX’— MOBX’— Qocz’ —yoD=’+ NX,

where Yo 9 ’70, ~os and Q. are the deflection,

angular displacement , bending moment , and shearing f orce
at the origin of coordinates.

The values A, B, C, D, I?, A’, B’, C ‘, D’, N’ at the
nth support (from the origin) are determined %y the recur-
rence formulas :

n-l
An== 1— ~XiA1~_i,

i=1
n—1

B.= Xn --~ ~iBs~.i,
i=l

n—1
C.= in— ~ ‘,C~2~_.i,

i=l

Dn= ~ —“>1Xi&,
,=1
n—1

iVn = P~_p — ~ xiN1~_l
iel

(
?n=&; --–;n_i = QL-—%)S

6EI )

n—i

A;= 1-~X#,~~_,,
1=1
n—1

2Bn’=rn— .xic,~n–i,
1=1
n—1

c: =Sn-~x,D,Sn_i,
i=l
n-l

D;= 2 XpWn--l,
1=1
n—l

.-p– zX/NJn-lNn’=PS
i=l

(

sn_i = (Xn — ~J2 “2EI ‘ )
Fn=& .

and
..
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Place the origin of coordinates at the left built-in
end. (See sketch of part of keel under consideration.)
Then yo=ff’o=o

and in the formulas for y= and ~x there only enter

the values C, D, N andBI, C~, N~.

The values of Ho and Q. are obtained by equating

to zero the expression for y and cp at the right end.
Since y and ~ for the right end are no other than
Y~* qs, the magnitudes Cl, Ca, Cs, C4~ Css DIs Das D3s
D 49 N l’T3,N4, X?5‘SS ~19 a~ are determined In tauecession.

Then
A 402

C1=S1 =2.40,3.107= 1’98”10–’

c,=.f2— 80 409
XC$-l=Q.A0,3 .107

‘15’88”102”1’98”10–8”6.40,3.107
=7,85010-6

C8=Q
A 3502

Xc1?3–1—XCJ9_2 ‘~.A0,Sa107 — 15,88.1021,98.10–6. 6 4~~~lo,—
. *

2703
-=12,05.10–6

‘15’88”102”7’85”10–66.40,3s107

c4=?,—
/\ A 390’

xCl?4_l‘XC’I&Z-xCSJd-a = 2.403.107—
#

3509 3103—
15’88”102”1’98”10–6”6.40,3.107‘15’88”102”7’85”10–6”6.40,3.107—

—15,88.102.12,05.10–664$33107=—20,093010–~
,“

A
c,= 25

A A A
-—%cJ&_l - xc215_2—xcJ5_3 —l@416_4=

4302 3908

‘2040,3.107 ‘15’88” 102”]’98”10–6 m3m—

3503 803
—

15’88”10’”7’85”10-66.40,3.107‘15’88”10’”12’05”10-66S40,3,107+

+ 15,88.102.20,093s10-6604&; ~07= – 73,3.10-6.
>“

In the same manner, by the preceding formulas the
remaining magnitudes are computed. The results are given
in the following table:

● 1

c 1,98.10-6
D 26,45.10–6
N o
B’ —
c’ , —
N’ —

2 I 3 I 4 I 5

7,85.10–6
210,8.10–6

o
—
—
—

12,05.10+
14510.10–6
1016.10–6P

—
—
—

—20,093c104
19570.10-6
2168-IO-6P

—

—

—73,3.10-6

20350.10–6
3682.1O+P
—1,504.104
—73,6.10–6
37,7.104.F

I
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Now MO. Q. are determined from the equations:

y3=73,3010-’J40-–20350”10-G1Q(,+3682s10-’P,

Q,= 1,504.10-GA40+ 73,6.10-’Q,)+ 37,7.10–’P.

There i. ~bt~i~ed I3682 --203501
I37,7 73,6 I

‘“‘– I73,3 20350I
- P=--- 29,2P,

—.

1,504 73,6I

I73,3 368’2]
1,504 37,7

Q.= – ---~3--–2mr~- P= 0,0769P.

_-

1,504 73,6 I
Then the maximum deflection is found. The coordinate
of the center of the beam is

XP=215 cm

Since cxp=;xp— xcl~rp_.1—xc2?,p_x =

215’ 1753
‘2.40,3.107‘15’88”10’”1’98”10-’’6.40,3.107—

,J35J——-
‘15’88”10’”7’85”10-’6.40,3.107=37’7”10‘6’

DXp=&D,f=p _,,—xD,t,p-X,=

2153—
‘6.40,3.107

—15,88010’.26,45010-G6#~310T—

1353 “ ‘
— ==3682.10‘,‘~5’88”102”210’8”10-’”6.40,3.10’

NC,= O

and therefore Yz,,=29)2cP”37,7c10-’—0,0769”P”3682010-’=845.10-GP.

K iS determined K=8&.10’ &=ll,83.102~.

Since five bulkheads are associated with the wetted
surface Kkm. 1,183.10’~.

Determination of the function u(c).- To determine
the function u(c), it is necessary first to write down an
analytical expression for the bottom profile. In this
case the bottom profile consists of a section of a straight
line and part of a circle, but it is more convenient to
express it by a curve of the form T] = Bog - Bn_lfn.
For n = 4, this curve very accurately represents the
profile. The coefficient Do and $3 are determined
by two points of the profile.
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Denoting by ~1 and t2, respectively, the coordinate

of the end ‘of the st-raight.l-ine and the -end of the curvi-
linear part’s of the profile gives from the sketch

EI=41 cm.,..Tt= 14,4.,cm , ~ .-, .
t2=75cm, q2,=20cm.

whence

an”d since

“ the;efore

.,
PO= %~24-71244 : 14,4075’—2o.4l~=0,37;

$62’— :*&4 41.754—75.414 .

p3’=—. 712$. - Tlfz _ 20.41—14,+75=02375 ~o_C 1
t*E24 – E2E~4 [1‘—— 41.754—75.414 ‘ ‘“ —ems

kO=0,636, k9=Il,500,
,..

U“(C)=“&~O — kJjc3 = 0,636.0,37-–1,5s0,2375.10–Gc?=
.
.“

-!. .e ,..
= 0,235-–:0,356o10-sF’.

Computation of 1, Al, w(c), vo. - To determine 1,

the wave i,s--drawnto a certain scale in the form of a
trochoid of height” of 1 meter and length 11 meters. To
the .eame scale the contour of the float is drawn and
superposed oh the wave with a trim angle equal to 10°
(fig. lo). Then %y the same procedure as indicated .
previously, there is obtained from the skptch

“ l=200cm

200
Al=+=T= 40 cm

Assume for p the value
0,001028~,

. P=
g cm=

314.200There is obtained - %2=0,001028.-C2=P=P2mr 1,47.10-4.C2
?

. VO= V.OCsin10°= 30,6s0,17365~ ~5,3-&,
.,., .-

i2

where ~ mr= —=? kgmi2+a2.,. -,
. Collection of data required for the computation.-

b=75cm, Al=40 cm’

0,001028~p= ●p= 1,47.10.-’C2,>:>:.
,.,.’

g qms

=0,235=0,356 .IO–GC8,H=22,57..10]0~”, ‘“’
●

u
cma \ ,.

k=l,183.102~, Vo=5,3~see’

Determination of A(c) and M(c).- By fotxm,ulas(9) -
and (.10) are computed the values of Me(c) for a number
of values of c. A curve is then drawn from.which the
maximum value Me(c) ie determined.

—————-
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~ = 37.5 centimeters,Tor c =
2

there is obtained

w= 1.47 x10-4 x 37.52 = 0.2065—

u= 0,235 - 0.356 X 10-6 X 37.53 = 0.2162

A(3’7.5) = -2.56

11.(37.5) = 8.2 X 104 kilogram-centimeter

By computin~ also I!C(c) for the points c= 20,30,

5C , 75 ceiltimeters, a curve i:= 11o(c) is obtained (fig. 12).

Trom the figure it is seen that MO(C) reaches a maximum

approximately for c = ~ alla ~J1o(c)~ 8.2 X 104 kilogram–

centimeter.

Determination of the correction coefficient.–——.——————— ..———————-—.————————————_—_——__ ___
I

(
.---.—

cf. .––––=––-––––––––:-i––-–––––––––-––-z1 - ~ x —7—5.

( )
) = 0.7L6

1- ––-––-–-–-gay–-2–n–o––––-––––––––– 2 200 ,
+ 200——--—— -————- —--—-————__— _ ———

.3-14 X 1.028 X 1“0-3 x ’753 75

DeieCDinaLLQQ_QQ_thQ_SLCeSSeS_ao- since q X maximum

I’~o(C)= 6.28 X 104 kilogram-centimeter and the resistance
moment of the floors 17= 20.85 cu-oic centimeters, there
is o’~tained

u=
T X max iIO(c)
———_—————_—— - = 30., :E

w mmz

It may be noted that the present-day factory compu-
tation (the so-called ‘static computation’) of the floor
as ail element of the transverse system gives ~ = 33
kilograms per squai’e millimeter.

Translation by S. Reiss,
National Advisory Committee
for Aeronautics.
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